Purpose Of Review: New single-cell tec. hnologies developed over the past decade have considerably reshaped the biomedical research landscape, and more recently have found their way into studies probing the pathogenesis of type 1 diabetes (T1D). In this context, the emergence of mass cytometry in 2009 revolutionized immunological research in two fundamental ways that also affect the T1D world: first, its ready embrace by the community and rapid dissemination across academic and private science centers alike established a new standard of analytical complexity for the high-dimensional proteomic stratification of single-cell populations; and second, the somewhat unexpected arrival of mass cytometry awoke the flow cytometry field from its seeming sleeping beauty stupor and precipitated substantial technological advances that by now approach a degree of analytical dimensionality comparable to mass cytometry.
Recent Findings: Here, we summarize in detail how mass cytometry has thus far been harnessed for the pursuit of discovery studies in T1D science; we provide a succinct overview of other single-cell analysis platforms that already have been or soon will be integrated into various T1D investigations; and we briefly consider how effective adoption of these technologies requires an adjusted model for expense allocation, prioritization of experimental questions, division of labor, and recognition of scientific contributions.
Summary: The introduction of contemporary single-cell technologies in general, and of mass cytometry, in particular, provides important new opportunities for current and future T1D research; the necessary reconfiguration of research strategies to accommodate implementation of these technologies, however, may both broaden research endeavors by fostering genuine team science, and constrain their actual practice because of the need for considerable investments into infrastructure and technical expertise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596883 | PMC |
http://dx.doi.org/10.1097/MED.0000000000000549 | DOI Listing |
Egypt J Immunol
January 2025
Critical Care unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt.
Platelets are hyperactive in patients with type2 diabetes (T2DM), they adhere to vascular endothelium and play a key role in macrovascular complications. Platelets activity can be measured by flow-cytometry (cluster of differentiation (CD) 41, CD 42, CD 62, CD 63), which allows detection of surface antigens in a sensitive and specific manner. This study aimed to describe platelets activity in T2DM in association with cardiovascular and cerebrovascular complications in relation to duration of diabetes (DM).
View Article and Find Full Text PDFComputerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .
View Article and Find Full Text PDFiScience
January 2025
Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands.
Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.
Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!