Asiatic acid (AA) is a promising anticancer agent, however, its delivery to glioblastoma is a major challenge. This work investigates the beneficial therapeutic efficacy of RGD-conjugated solid lipid nanoparticles (RGD-SLNs) for the selective targeting of AA to gliblastoma. AA-containing RGD-SLNs were prepared using two different PEG-linker size. Targetability and efficacy were tested using monolayer cells and spheroid tumor models. RGD-SLNs significantly improved cytotoxicity of AA against U87-MG monolayer cells and enhanced cellular uptake compared with non-RGD-containing SLNs. In spheroid models, AA-containing RGD-SLNs showed superior control in tumor growth, improved cytotoxicity and enhanced spheroid penetration when compared with AA alone or non-RGD-containing SLNs. This study illustrates the potential of AA-loaded RGD-SLNs as efficacious target-specific treatment for glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2020-0035 | DOI Listing |
J Bioenerg Biomembr
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.
View Article and Find Full Text PDFACS Omega
December 2024
Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.
Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.
View Article and Find Full Text PDFAntiinflamm Antiallergy Agents Med Chem
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.
View Article and Find Full Text PDFJ Microencapsul
January 2025
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Aims: This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain barrier.
Methods: A central composite design was employed to synthesise 32 SLN formulations. Response surface methodology (RSM) and artificial neural networks (ANN) models predicted mean diameter and EE based on five independent variables.
Cancer Lett
January 2025
Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!