Arabinogalactan proteins are a diverse group of cell wall-associated proteoglycans. While structural and molecular genetic analyses have contributed to the emerging improved understanding of the wide-range of biological processes in which AGPs are implicated; the ability to detect, localize, and quantify them is fundamentally important. This chapter describes three methods: histological staining, radial gel diffusion, and colorimetric quantification, each of which utilize the ability of Yariv reagent to bind to AGPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0621-6_24 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland.
Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
Background: Silicon has an important role in regulating water management in plants. It is deposited in cell walls and creates a mechanical barrier against external factors. The aim of this study was to determine the role of silicon supplementation in the synthesis and distribution of callose in oilseed rape roots and to characterize the modifications of cell wall structure of these organs after exposure to drought stress.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Proc Natl Acad Sci U S A
December 2024
Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
Actin cytoskeleton drives the targeted transport of cell wall components to sustain the tip growth of pollen tubes for double fertilization; however, the underlying mechanism remains largely unknown. formin 5 (AtFH5), an actin-nucleating protein, localizes at secretory vesicles and mediates actin polymerization-based vesicle trafficking in pollen. Here, we demonstrate that AtFH5 determines the recruitment and transport of cell wall components in AtFH5-labeled vesicles during the tip growth of pollen tubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!