Orchestrated control of multiple overlapping and sequential processes is required for the maintenance of epidermal homeostasis and the response to and recovery from a variety of skin insults. Previous studies indicate that membrane-associated serine protease matriptase and prostasin play essential roles in epidermal development, differentiation, and barrier formation. The control of proteolysis is a highly regulated process, which depends not only on gene expression but also on zymogen activation and the balance between protease and protease inhibitor. Subcellular localization can affect the accessibility of protease inhibitors to proteases and, thus, also represents an integral component of the control of proteolysis. To understand how membrane-associated proteolysis is regulated in human skin, these key aspects of matriptase and prostasin were determined in normal and injured human skin by immunohistochemistry. This staining shows that matriptase is expressed predominantly in the zymogen form at the periphery of basal and spinous keratinocytes, and prostasin appears to be constitutively activated at high levels in polarized organelle-like structures of the granular keratinocytes in the adjacent quiescent skin. The membrane-associated proteolysis appears to be elevated via an increase in matriptase zymogen activation and prostasin protein expression in areas of skin recovering from epidermal insults. There was no noticeable change observed in other regulatory aspects, including the expression and tissue distribution of their cognate inhibitors HAI-1 and HAI-2. This study reveals that the membrane-associated proteolysis may be a critical epidermal mechanism involved in responding to, and recovering from, damage to human skin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-020-00385-zDOI Listing

Publication Analysis

Top Keywords

matriptase prostasin
12
membrane-associated proteolysis
12
human skin
12
control proteolysis
8
zymogen activation
8
skin
7
matriptase
5
proteolysis
5
prostasin proteolytic
4
proteolytic activities
4

Similar Publications

Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane.

Hum Cell

December 2024

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.

Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures.

View Article and Find Full Text PDF

Exosome-Mediated Activation of the Prostasin-Matriptase Serine Protease Cascade in B Lymphoma Cells.

Cancers (Basel)

July 2023

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.

Prostasin and matriptase are extracellular membrane serine proteases with opposing effects in solid epithelial tumors. Matriptase is an oncoprotein that promotes tumor initiation and progression, and prostasin is a tumor suppressor that reduces tumor invasion and metastasis. Previous studies have shown that a subgroup of Burkitt lymphoma have high levels of ectopic matriptase expression but no prostasin.

View Article and Find Full Text PDF

HAI-1 is required for the novel role of FGFBP1 in maintenance of cell morphology and F-actin rearrangement in human keratinocytes.

Hum Cell

July 2023

Lombardi Comprehensive Cancer Center, Department of Oncology, W422 Research Building, Georgetown University, W416 Research Building, 3970 Reservoir Road, NW, Washington, DC, 20057, USA.

Formation and maintenance of skin barrier function require tightly controlled membrane-associated proteolysis, in which the integral membrane Kunitz-type serine protease inhibitor, HAI-1, functions as the primary inhibitor of the membrane-associated serine proteases, matriptase and prostasin. Previously, HAI-1 loss in HaCaT human keratinocytes resulted in an expected increase in prostasin proteolysis but a paradoxical decrease in matriptase proteolysis. The paradoxical decrease in shed active matriptase is further investigated in this study with an unexpected discovery of novel functions of fibroblast growth factor-binding protein 1 (FGFBP1), which acts as an extracellular ligand that can rapidly elicit F-actin rearrangement and subsequently affect the morphology of human keratinocytes.

View Article and Find Full Text PDF

N-glycosylation on Asn-57 is required for the correct HAI-2 protein folding and protease inhibitory activity.

Glycobiology

April 2023

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States.

Hepatocyte growth factor activator inhibitor (HAI)-2 is an integral membrane Kunitz-type serine protease inhibitor that regulates the proteolysis of matriptase and prostasin in a cell-type selective manner. The cell-type selective nature of HAI-2 function depends largely on whether the inhibitor and potential target enzymes are targeted to locations in close proximity. The N-glycan moiety of HAI-2 can function as a subcellular targeting signal.

View Article and Find Full Text PDF

We have previously reported that ultrasound (US)-mediated microbubble (MB) cavitation (US-MB) changed the permeability of the skin and significantly enhanced transdermal drug delivery (TDD) without changing the structure of the skin. In this study we found that US-MB enhanced TDD via disruption of epidermal cell-cell junctions and increased matriptase activity. Matriptase is a membrane-bound serine protease regulated by its inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1), and it is expressed in most epithelial tissues under physiologic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!