Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nicotinate dehydrogenase (NDHase) is a membrane protein with three subunits (ndhS, ndhL, and ndhM), which is difficult to express in a functional form using common hosts such as Escherichia coli, Bacillus subtilis, or Pichia pastoris. Comamonas testosteroni is a suitable microbial chassis for expressing multi-subunit membrane proteins. However, the expression of NDHase in C. testosteroni is extremely low. We have developed a systematic approach to create an efficient protein expression system in C. testosteroni CNB-2 using multi-level N-terminal engineering. We selected a strong promoter for the Mmp1 system that enables control of transcriptional strength in unconventional bacteria. This enhanced the expression of a green fluorescent reporter protein threefold. Following modification of the N-terminal Shine-Dalgarno sequence and rearrangement of amino acid sequence in the starting area of the gene encoding NDHase, enzyme activity increased from 90.6 to 165 U/L. These optimized N-terminal Shine-Dalgarno and amino acid sequences were used to enhance the expression of ndhL subunit and improve the balance expression of three subunits of NDHase, resulting in enzyme activity of 192 U/L that far surpasses the previously reported level. These results highlight a promising strategy for the development of other heterologous expression systems for challenging proteins using unconventional bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-020-03354-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!