Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system.

Environ Sci Pollut Res Int

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.

Published: October 2020

The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants (WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal (BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of Accumulibacter and Tetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while the relative abundances of Competibacter and Defluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) performance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09912-9DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
28
scpr system
24
chemical phosphorus
12
population full-scale
8
simultaneous chemical
8
bpr phenotypes
8
relative abundances
8
chemical reagents
8
phosphorus
7
removal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!