Complicated and strict protocols are followed to tune the size of gold nanoparticles (GNPs) in chemical synthesis methods. In this study, we address the polarity of solvents as a tool for tailoring the size of GNPs in the chemical reduction method. The effects of varying polarity index of the reaction medium on synthesizing gold nanoparticles by chemical reduction method have been investigated. Ethanol as a polar solvent, ethanol-water mixture as reaction medium, L-ascorbic acid as reducing agent, and polyvinylpyrrolidone as stabilizer were used to synthesize GNPs. The polarity index of the reaction medium was adjusted by changing the volume ratio of ethanol to water. UV-Vis, dynamic light scattering (DLS), and transmission electron microscopy (TEM) characterizations reveal that the growth of nanoparticles was gradually increased (~ 22 to 219 nm hydrodynamic diameter) with decreasing value of polarity index of the reaction medium (~ 8.2 to 5.2). Furthermore, the high polarity index of the reaction medium produced smaller and spherical nanoparticles, whereas lower polarity index of reaction medium results in bigger size of GNPs with different shapes. These results imply that the mechanistic of the growth, assembly, and aggregation phenomena of ligand or stabilizer-capped GNPs strongly rely on the polarity of solvent molecules. Using the proposed methodology, wide size range of GNPs with different morphology sizes can be synthesized by simply modulating the volume percentage of organic solvent in the reaction medium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332595 | PMC |
http://dx.doi.org/10.1186/s11671-020-03370-5 | DOI Listing |
J Biol Eng
January 2025
Department of Aquatic Animals and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Sahyadri Science College, Shivamogga, Karnataka, 574146, India.
Newly synthesized 1-bromo-2-(4-bromophenylsulfonate)-4,4-dimethyl-1-cyclohexenyl-6-one (CHD) as a potential anticorrosive agent in an acidic medium at an elevated temperature range of 305-335 K. This synthesized compound confirmed by spectral characterizations and it acts as a coating on mild steel surfaces in 1 M Hydrochloric acid (HCl) solution through electrochemical reactions. The synthesis of the compound has been discussed, and the Infrared (IR) and Nucleic Magnetic Resonance (NMR) spectral analysis confirmed the derivative.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.
Background: Cerebral Amyloid Angiopathy (CAA) occurs at the intersection of Alzheimer's disease and vascular contributions to cognitive impairment and dementia (VCID). In the human brain it occurs when amyloid beta (Aβ) aggregates in small/medium-sized cerebral blood vessels, which contribute to hypoperfusion and cognitive decline by altering vascular function and integrity. The current study seeks to track the progression of CAA and associated neuroinflammation and glial cell changes in Tg2576 mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!