Background: Basic fibroblast growth factor (bFGF) regulates cell proliferation, migration, and differentiation in various cell types. The aim of the present study was to determine the bFGF target genes in stem cells isolated from human exfoliated deciduous teeth (SHEDs).
Methods: Cells were isolated from pulp tissue obtained from exfoliated deciduous teeth. Mesenchymal stem cell surface markers and the differentiation potential toward adipogenic and neurogenic lineages were characterized. The bFGF-treated SHED transcriptome was examined using a high throughput RNA sequencing technique. The mRNA and protein expression of selected genes were evaluated using real-time polymerase chain reaction and immunofluorescence staining, respectively. Cell cycle analysis was performed by flow cytometry. The colony forming unit number was also examined.
Results: The isolated cells expressed CD44, CD90, CD105, but not CD45. The upregulation of adipogenic and neurogenic marker genes was observed after culturing cells in the appropriate induction medium. Transcriptome analysis of the bFGF treated cells revealed that the upregulated genes were in the cell cycle related pathways, while the downregulated genes were in the extracellular matrix related pathways. Correspondingly, bFGF induced 7 mRNA expression and Ki67 protein expression. Furthermore, bFGF treatment significantly decreased the G0/G1, but increased the G2/M, population in SHEDs. Colony formation was markedly increased in the bFGF treated group and was attenuated by pretreating the cells with FGFR or PI3K inhibitors.
Conclusion: bFGF controls cell cycle progression in SHEDs. Thus, it can be used to amplify cell number to obtain the amount of cells required for regenerative treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322690 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e04246 | DOI Listing |
Sci Adv
January 2025
Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA.
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address:
Bone marrow stromal cells (BMSCs) serve as a valuable reservoir of multipotent stem cells important in the regulation of bone homeostasis and energy metabolism. Here, we present a protocol for isolating human BMSCs (hBMSCs) and characterizing their cellular metabolism related to hBMSC functional properties. We describe steps for bioenergetics, cell senescence, and production of reactive oxygen species (ROS), together with description of the data analysis.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.
The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!