AI Article Synopsis

  • Compact silicon integrated lasers are being researched for their potential applications, specifically targeting sub-mm long structures that emit light at a wavelength of 1.533 µm.
  • The study combines a multi-segment silicon waveguide design with a new technique for depositing erbium-doped thin films to achieve efficient lasing.
  • It suggests that using quarter-wave shifted distributed feedback (QWS-DFB) structures can lead to compact (< 500 µm) on-chip lasers that operate effectively under low optical pumping powers.

Similar Publications

Energy-resolved fast-neutron radiography is a powerful non-destructive technique that can be used to remotely measure the quantity and distribution of elements and isotopes in a sample. This is done by comparing the energy-dependent neutron transmission of a sample with the known cross-sections of individual isotopes. The reconstruction of the composition is possible due to the unique features (e.

View Article and Find Full Text PDF

It is long known that particles of the same material but with different sizes charge with different polarities in mutual collisions. In most cases, the smaller grains become negative. Here, we study tribocharging of (sub-)mm dust aggregates in the course of microgravity experiments by determining the charges of particles through their motion within an electric field.

View Article and Find Full Text PDF
Article Synopsis
  • A laser pulse in a magnetically confined fusion plasma creates a microscopic cavity by removing electrons and causing a Coulomb explosion of ions.
  • Simulations suggest that this tiny cavity can collapse within 10 nanoseconds, influenced by factors like size and electric fields.
  • Researchers are exploring whether these collapsing cavities can create stable micro-cavities that might be useful for applications in plasma technology, such as diagnostics and control methods.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying the multi-scale interstellar medium (ISM) of our Galaxy to understand the relationships between gas, dust, and star formation in Giant Molecular Clouds (GMCs).
  • The Milky Way's complex structure is influenced by massive stars and dust lanes, making it essential to observe these features at (sub-)millimeter wavelengths for in-depth analysis.
  • A proposed 50m single-dish sub-mm telescope called AtLAST aims to provide comprehensive observations of the Galactic Plane and surrounding areas to enhance our understanding of stellar formation, planetary system evolution, and the overall ecology of our Galaxy.
View Article and Find Full Text PDF

Significance: Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecular phenotypic information about the disease being resected. Conventional fluorescence-guided surgery relies on long, microsecond scale laser pulses to excite fluorescent probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!