A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars. | LitMetric

The transition of the martian climate from the wet Noachian era to the dry Hesperian (4.1-3.0 Gya) likely resulted in saline surface waters that were rich in sulfur species. Terrestrial analogue environments that possess a similar chemistry to these proposed waters can be used to develop an understanding of the diversity of microorganisms that could have persisted on Mars under such conditions. Here, we report on the chemistry and microbial community of the highly reducing sediment of Colour Peak springs, a sulfidic and saline spring system located within the Canadian High Arctic. DNA and cDNA 16S rRNA gene profiling demonstrated that the microbial community was dominated by sulfur oxidising bacteria, suggesting that primary production in the sediment was driven by chemolithoautotrophic sulfur oxidation. It is possible that the sulfur oxidising bacteria also supported the persistence of the additional taxa. Gibbs energy values calculated for the brines, based on the chemistry of Gale crater, suggested that the oxidation of reduced sulfur species was an energetically viable metabolism for life on early Mars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331718PMC
http://dx.doi.org/10.1038/s41598-020-67815-8DOI Listing

Publication Analysis

Top Keywords

primary production
8
sulfur species
8
microbial community
8
sulfur oxidising
8
oxidising bacteria
8
sulfur
5
identification sulfide
4
sulfide oxidation
4
oxidation a potential
4
a potential metabolism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!