Circular RNAs (circRNAs) serve as competing endogenous RNAs (ceRNAs) and indirectly regulate gene expression through shared microRNAs (miRNAs). However, the potential circRNAs functioning as ceRNAs in osteoporosis remain unclear. The bone marrow mesenchymal stem cells (BMSCs) were isolated from ovariectomy (OVX) mice and controls. We systematically analyzed RNA-seq and miRNA-microarray data, miRNA-target interactions, and prominently coexpressed gene pairs to identify aberrantly expressed circRNAs, miRNAs, and messenger RNAs (mRNAs) between the OVX mice and controls. A total of 45 circRNAs, 22 miRNAs, and 548 mRNAs were significantly dysregulated (fold change > 1.5; p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted for differentially expressed mRNAs, and subsequently a circRNA-associated ceRNA network involved in osteoporosis was constructed. We identified two ceRNA regulatory pathways in this osteoporosis mouse model-novel circRNA 0020/miR-206-3p/Nnmt and circRNA 3832/miR-3473e/Runx3, which were validated by real-time PCR. This is the first study to elucidate the circRNA-associated ceRNA network in OVX and control mice using deep RNA-seq and RNA-microarray analysis. The data further expanded the understanding of circRNA-associated ceRNA networks, and the regulatory functions of circRNAs, miRNAs and mRNAs in the pathogenesis and pathology of osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331745 | PMC |
http://dx.doi.org/10.1038/s41598-020-67750-8 | DOI Listing |
Alzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Postmenopausal females who carry an APOE4 allele are at higher risk of late-onset Alzheimer's Disease (LOAD) compared to age-matched APOE4 males. Estrogen deficiency predisposes females to an increased risk of vascular, cognitive and metabolic impairments. Estrogen and APOE genotype are known to impact metabolic and mitochondrial function in the brain, but their effects on cerebral vessels are unknown.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
December 2024
Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:
Segetalin B (SB) has shown promise in mitigating osteoporosis in ovariectomized (OVX) mice, though its underlying mechanisms remain unclear. This study investigates how SB promotes bone formation through Phospholipase D1 (PLD1) activation in OVX models. In vitro, bone marrow-derived mesenchymal stem cells (BMSCs) from OVX mice were cultured for osteogenic differentiation.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Cardiology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong, 266000, China.
An improved understanding of the molecular actions underpinning bone marrow mesenchymal stem cell (BMSC) differentiation could highlight new therapeutics for osteoporosis (OP). Current evidence indicates that microRNAs (miRNAs) exert critical roles in many biological systems, including osteoblast differentiation. In this study, we examined miR-468-3p effects on osteogenic differentiation (OD).
View Article and Find Full Text PDFJ Infect Dis
December 2024
Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
Background: Antiretroviral therapy (ART) causes osteoporosis and bone fractures, increasing morbidity and mortality in people living with HIV (PLH). ART induces immune reconstitution bone loss (IRBL), an inflammatory reaction associated with immune system reactivation. Women represent >50% of PLH, and many are now undergoing menopause, a major cause of postmenopausal osteoporosis that also increases fracture risk.
View Article and Find Full Text PDFHorm Behav
December 2024
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.
The aim of the present study was to investigate the role of ovarian hormones on dopaminergic regulation of prepulse inhibition (PPI), a measure of sensorimotor gating deficient in schizophrenia and other psychiatric illnesses. Either in adulthood (11 weeks of age) or adolescence (5 weeks of age), female mice underwent ovariectomy (OVX) and were implanted with 17β-estradiol, progesterone, or a combination of these hormones. All mice were tested in adulthood for the acute effect of the dopamine receptor agonist, apomorphine, on PPI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!