Absract: BACKGROUND: Several studies have investigated the associations between the podocalyxin-like protein (PODXL) expression quantity or locations and cancers survival, but the results were far from conclusive. Therefore, we proceeded a meta-analysis on PODXL in various human cancers to find its prognostic value and followed confirmation using the TCGA datasets.

Methods: We performed a systematic search, and 18 citations, including 5705 patients were pooled in meta-analysis. The results were verified with TCGA datasets.

Results: Total eligible studies comprised 5705 patients with 10 types of cancer. And the result indicated that PODXL high-expression or membrane-expression were significantly related to poor overall survival (OS). However, subgroup analysis showed a significant association between high expressed PODXL and poor OS in the colorectal cancer, pancreatic cancer, urothelial bladder cancer, renal cell carcinoma and glioblastoma multiforme. Then, we validated the inference using TCGA datasets, and the consistent results were demonstrated in patients with pancreatic cancer, glioblastoma multiforme, gastric cancer, esophageal cancer and lung adenocarcinoma.

Conclusion: The result of meta-analysis showed that high expressed PODXL was significantly linked with poor OS in pancreatic cancer and glioblastoma multiforme, but not in gastric cancer, esophageal cancer or lung adenocarcinoma. And the membrane expression of PODXL might also associate with poor OS. PODXL may act as tumor promotor and may serve as a potential target for antitumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331259PMC
http://dx.doi.org/10.1186/s12885-020-07108-5DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
glioblastoma multiforme
12
cancer
10
podxl
8
tcga datasets
8
5705 patients
8
high expressed
8
expressed podxl
8
cancer glioblastoma
8
multiforme gastric
8

Similar Publications

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!