A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Competitive effects in bacterial mRNA decay. | LitMetric

Competitive effects in bacterial mRNA decay.

J Theor Biol

Univ. Grenoble Alpes, Inria, 38000 Grenoble, France. Electronic address:

Published: November 2020

In living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay. The model predictions reproduce and explain a number of experimental observations on mRNA decay following transcription arrest, such as delays before the onset of degradation, the occurrence of variable degradation profiles with increased non linearities and the negative correlation between mRNA half-life and concentration. The competition acts at different levels, through the initial concentration of cell mRNAs and by modifying the enzyme affinity for its targets. The consequence is a global slow down of mRNA decay due to enzyme titration and the amplification of its apparent affinity. Competition happens to stabilize weakly affine mRNAs and to destabilize the most affine ones. We believe that this mechanistic model is an interesting alternative to the exponential models commonly used for the determination of mRNA half-lives. It allows analysing regulatory mechanisms of mRNA degradation and its predictions are directly comparable to experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2020.110333DOI Listing

Publication Analysis

Top Keywords

mrna decay
16
mechanistic model
8
cell mrnas
8
mrna
7
degradation
5
competitive effects
4
effects bacterial
4
bacterial mrna
4
decay
4
decay living
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!