Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544543PMC
http://dx.doi.org/10.1182/blood.2020006372DOI Listing

Publication Analysis

Top Keywords

car cells
28
car
9
cells
9
robust expansion
8
hematologic malignancies
8
car t-cell
8
expansion virus-specific
8
antigen
5
art-suppressed
5
expansion
5

Similar Publications

The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).

View Article and Find Full Text PDF

iPSC-derived CD19 CAR NK cells for relapsed or refractory lymphoma.

Lancet

January 2025

Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Electronic address:

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Optimizing CAR-T cell function in solid tumor microenvironment: insights from culture media additives.

Curr Res Transl Med

December 2024

Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Cancer remains one of the most pressing health challenges worldwide. Recently, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising approach for treating hematological cancers. However, the translation of CAR-T cell therapy to solid tumors faces formidable obstacles, notably the immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

CAR-T cell therapy for breast cancer: Current status and future perspective.

Cancer Treat Rev

December 2024

Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy. Electronic address:

Within the expanding therapeutic landscape for breast cancer (BC), metastatic breast cancer (MBC) remains virtually incurable and tend to develop resistance to conventional treatments ultimately leading to metastatic progression and death. Cellular immunotherapy (CI), particularly chimeric antigen receptor-engineered T (CAR-T) cells, has emerged as a promising approach for addressing this challenge. In the wake of their striking efficacy against hematological cancers, CAR-T cells have also been used where the clinical need is greatest - in patients with aggressive BCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!