Glycocins are the ribosomally synthesized glycosylated bacteriocins discovered and characterized in Firmicutes, only. These peptides have antimicrobial activity against several pathogenic bacteria, including Streptococcus pyogenes , methicillin-resistant Staphylococcus aureus and food-spoilage bacteria Listeria monocytogenes. Glycocins exhibit immunostimulatory properties and make a promising source of new antibiotics and food preservatives akin to Nisin. Biochemical studies of Sublancin, Glycocin F, Pallidocin and ASM1 prove that the nested disulfide-bonds are essential for their bioactivities. Using in silico approach of genome mining coupled with manual curation, here we identify 220 new putative glycocin biosynthesis gene clusters (PGBCs) spread across 153 bacterial species belonging to seven different bacterial phyla. Based on gene composition, we have grouped these PGBCs into five distinct conserved cluster Types I-V. All experimentally identified glycocins belong to Type I PGBCs. From protein sequence based phylograms, tanglegrams, global similarity heat-maps and cumulative mutual information analysis, it appears that glycocins may have originated from closely related bacteriocins, whereas recruitment of cognate glycosyltransferases (GTs) might be an independent event. Analysis further suggests that GTs may have coevolved with glycocins in cluster-specific manner to define distinctive donor specificities of GTs or to contribute to glycocin diversity across these clusters. We further identify 162 hitherto unreported PGBCs wherein the corresponding product glycocins have three or less than three cysteines. Secondary structure predictions suggest that these putative glycocins may not form di-nested disulfide-bonds. Therefore, production of such glycocins in heterologous host Escherichia coli is feasible and may provide novel antimicrobial spectrum and or mechanism of action for varied applications.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwaa061DOI Listing

Publication Analysis

Top Keywords

glycocin biosynthesis
8
biosynthesis gene
8
gene clusters
8
glycocins
8
distribution diversity
4
glycocin
4
diversity glycocin
4
clusters firmicutes
4
firmicutes glycocins
4
glycocins ribosomally
4

Similar Publications

GLYCOCINS: The sugar peppered antimicrobials.

Biotechnol Adv

October 2024

CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India; Current address: Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India. Electronic address:

Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity.

View Article and Find Full Text PDF

Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs.

Chem Commun (Camb)

June 2024

Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Cyclotides and lanthipeptides are cyclic peptide natural products with promising bioengineering potential. No peptides have been isolated that contain both structural motifs defining these two families, an N-to-C cyclised backbone and lanthionine linkages. We combined their biosynthetic machineries to produce hybrid structures that possess improved activity or stability, demonstrate how the AEP-1 plant cyclase can be utilised to complete the maturation of the sactipeptide subtilosin A, and present head-to-tail cyclisation of the glycocin sublancin.

View Article and Find Full Text PDF

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%.

View Article and Find Full Text PDF

The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina).

View Article and Find Full Text PDF

Structural Characteristics of Glycocins: Unraveling the Role of S-Linked Carbohydrates and Other Structural Elements.

J Chem Inf Model

February 2022

Department of Molecular Biology and Biotechnology, Graduate Program in Cellular and Molecular Biology (PPGBCM-UFRGS), Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, Brazil.

Glycocins are antimicrobial peptides with glycosylations, often an S-linked monosaccharide. Their recent structure elucidation has brought forth questions about their mechanisms of action as well as the impact of S-glycosylation on their structural behavior. Here, we investigated structural characteristics of glycocins using a computational approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!