In sarcomeres, α-actinin crosslinks thin filaments and anchors them at the Z-disc. Drosophila melanogaster Zasp52 also localizes at Z-discs and interacts with α-actinin via its extended PDZ domain, thereby contributing to myofibril assembly and maintenance, yet the detailed mechanism of Zasp52 function is unknown. Here we show a strong genetic interaction between actin and Zasp52 during indirect flight muscle assembly, indicating that this interaction plays a critical role during myofibril assembly. Our results suggest that Zasp52 contains an actin-binding site, which includes the extended PDZ domain and the ZM region. Zasp52 binds with micromolar affinity to monomeric actin. A co-sedimentation assay indicates that Zasp52 can also bind to F-actin. Finally, we use in vivo rescue assays of myofibril assembly to show that the α-actinin-binding domain of Zasp52 is not sufficient for a full rescue of Zasp52 mutants suggesting additional contributions of Zasp52 actin-binding to myofibril assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332060PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232137PLOS

Publication Analysis

Top Keywords

myofibril assembly
20
zasp52
10
extended pdz
8
pdz domain
8
zasp52 actin-binding
8
assembly
6
myofibril
5
characterizing actin-binding
4
actin-binding ability
4
ability zasp52
4

Similar Publications

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Article Synopsis
  • Molecular chaperones are essential for maintaining protein balance, and loss of Smyd1b in zebrafish leads to disorganized muscle fibers and increased heat shock protein expression.
  • RNA sequencing revealed that the upregulated heat shock proteins, particularly Hsp70s, are important for myosin folding and assembly in muscle cells.
  • Additionally, Hsf1 is crucial for activating heat shock gene expression during stress, with its absence exacerbating muscle issues in Smyd1b mutants and decreasing survival under heat stress.
View Article and Find Full Text PDF

Characterization of firmness in fermented sea bass (Lateolabrax japonicas) by multidimensional integration strategies: Insights from proteomic and microstructural analyses.

Food Chem

December 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China. Electronic address:

Fermented sea bass, recognized for its firmness and chewy texture, provides a distinct sensory experience.This study investigated the texture and microstructural properties of fermented sea bass during fermentation. Proteomics analysis identified the key proteins involved in firmness development, revealing the molecular mechanisms behind these changes.

View Article and Find Full Text PDF

Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart.

View Article and Find Full Text PDF

Neddylation drives myofibrillogenesis in the developing heart.

FASEB J

December 2024

Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.

Neddylation is a highly conserved post-translational modification that plays critical roles in various cellular processes through the modulation of cullins and non-cullin substrates. While neddylation is known to be essential for embryonic development, tumor growth, and organogenesis of different tissues, its role in cardiogenesis remains unexplored. Here, we investigated the role of neddylation in early cardiac development by deleting the gene encoding a regulatory subunit of the NEDD8-specific E1 activating enzyme, Nae1, globally and in a heart-specific fashion via Nkx2-5.

View Article and Find Full Text PDF

The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin's Z-disk to study skeletal muscle development and remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!