Stabilizing Oxygen Vacancy in Entropy-Engineered CoFeO-Type Catalysts for Co-prosperity of Efficiency and Stability in an Oxygen Evolution Reaction.

ACS Appl Mater Interfaces

School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China.

Published: July 2020

We used entropy engineering to design a series of CoFeO-type spinels. Through microstructural characterization, electrochemical measurements, and X-ray photoelectron spectroscopy, we demonstrated that the entropy-stabilized oxide (CoMnNiFeZn)FeO has a single-phase spinel structure and exhibits both efficient and stable catalytic oxygen evolution. This is attributable to disordered occupation of multivalent cations, which induces severe lattice distortion and increases configurational entropy, thereby facilitating formation of structurally stable, high-density oxygen vacancies on the exposed surface of the spinel. Thus, more catalytic sites on the surface are activated and retained over the course of long-duration testing for oxygen evolution. Entropy engineering expands researchers' access to catalysts that link entropy-stabilized structures to useful properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05916DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
entropy engineering
8
stabilizing oxygen
4
oxygen vacancy
4
vacancy entropy-engineered
4
entropy-engineered cofeo-type
4
cofeo-type catalysts
4
catalysts co-prosperity
4
co-prosperity efficiency
4
efficiency stability
4

Similar Publications

Enhanced phosphorus weathering contributed to Late Miocene cooling.

Nat Commun

January 2025

Centre for Marine Magnetism (CM2), Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

Late Miocene climate evolution provides an opportunity to assess Earth's climate sensitivity to carbon cycle perturbation under warmer-than-modern conditions. Despite its relevance for understanding the climate system, the driving mechanisms underlying profound climate and carbon cycle changes - including the enigmatic Late Miocene cooling from 7 to 5.4 million years ago - remain unclear.

View Article and Find Full Text PDF

The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.

View Article and Find Full Text PDF

The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.

View Article and Find Full Text PDF

Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.

View Article and Find Full Text PDF

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!