Micro-strains in the extracellular matrix induce angiogenesis.

Lab Chip

Department of Biomedical Engineering, Wallace Tumor Institute, University of Alabama at Birmingham, 1824 6th Avenue South, Room 630A, Birmingham, AL 35294, USA.

Published: August 2020

An improved understanding of biomechanical factors that control tumor development, including angiogenesis, could explain why few of the promising treatment strategies discovered via in vitro models translate well into in vivo or clinical studies. The ability to manipulate and in real-time study the multiple independent biomechanical properties on cellular activity has been limited, primarily due to limitations in traditional in vitro platforms or the inability to manipulate such factors in vivo. We present a novel microfluidic platform that mimics the vascularized tumor microenvironment with independent control of interstitial flow and mechanical strain. The microtissue platform design isolates mechanically-stimulated angiogenesis in the tumor microenvironment, by manipulating interstitial flow to eliminate soluble factors that could drive blood vessel growth. Our studies demonstrate that enhanced mechanical strain induced by cancer-associated fibroblasts (CAFs) promotes angiogenesis in microvasculature models, even when preventing diffusion of soluble factors to the growing vasculature. Moreover, small but significant decreases in micro-strains induced by inhibited CAFs were sufficient to reduce angiogenesis. Ultimately, we believe this platform represents a significant advancement in the ability to investigate biomechanical signals while controlling for biochemical signals, with a potential to be utilized in fields beyond cancer research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7659465PMC
http://dx.doi.org/10.1039/d0lc00145gDOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
interstitial flow
8
mechanical strain
8
soluble factors
8
angiogenesis
5
micro-strains extracellular
4
extracellular matrix
4
matrix induce
4
induce angiogenesis
4
angiogenesis improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!