Objective: To investigate the effects of cycling with functional electrical stimulation on walking, muscle power and tone, balance and activities of daily living in subacute stroke survivors.
Data Sources: Ten electronic databases were searched from inception to February 2020.
Review Methods: Inclusion criteria were: subacute stroke survivors (<6 months since stroke), an experimental group performing any type of cycling training with electrical stimulation, alone or in addition to usual care, and a control group performing usual care alone. Two reviewers assessed eligibility, extracted data and analyzed the risks of bias. Standardized Mean Difference (SMD) or Mean Difference (MD) with 95% Confidence Intervals (CI) were estimated using fixed- or random-effects models to evaluate the training effect.
Results: Seven randomized controlled trials recruiting a total of 273 stroke survivors were included in the meta-analyses. There was a statistically significant, but not clinically relevant, effect of cycling with electrical stimulation compared to usual care on walking (six studies, SMD [95% CI] = 0.40 [0.13, 0.67]; = 0.004), capability to maintain a sitting position (three studies, MD [95% CI] = 7.92 [1.01, 14.82]; = 0.02) and work produced by the paretic leg during pedaling (2 studies, MD [95% CI] = 8.13 [1.03, 15.25]; = 0.02). No significant between-group differences were found for muscular power, tone, standing balance, and activities of daily living.
Conclusions: Cycling training with functional electrical stimulation cannot be recommended in terms of being better than usual care in subacute stroke survivors. Further investigations are required to confirm these results, to determine the optimal training parameters and to evaluate long-term effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0269215520938423 | DOI Listing |
Transl Vis Sci Technol
January 2025
New England Eye Center, Tufts Medical Center, Boston, MA, USA.
Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.
Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).
J Appl Physiol (1985)
January 2025
Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).
View Article and Find Full Text PDFNanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic.
Background And Objectives: Patients with synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease (PD) frequently display speech and language abnormalities. We explore the diagnostic potential of automated linguistic analysis of natural spontaneous speech to differentiate MSA and PD.
Methods: Spontaneous speech of 39 participants with MSA compared to 39 drug-naive PD and 39 healthy controls matched for age and sex was transcribed and linguistically annotated using automatic speech recognition and natural language processing.
ACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!