Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Loss of β-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase β-cell mass are less developed. Promoting β-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring β-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3β (GSK3β) was previously reported to induce primary human β-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring β-cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202000183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!