This paper presents an automatic lobe-based labeling of airway tree method, which can detect the bifurcation points for reconstructing and labeling the airway tree from a computed tomography image. A deep learning-based network structure is designed to identify the four key bifurcation points. Then, based on the detected bifurcation points, the entire airway tree is reconstructed by a new region-growing method. Finally, with the basic airway tree anatomy and topology knowledge, individual branches of the airway tree are classified into different categories in terms of pulmonary lobes. There are several advantages in our method such as the detection of the bifurcation points does not depend on the segmentation of airway tree and only four bifurcation points need to be manually labeled for each sample to prepare the training dataset. The segmentation of airway tree is guided by the detected points, which overcomes the difficulty of manual seed selection of conventional region-growing algorithm. In addition, the bifurcation points can help analyze the tree structure, which provides a basis for effective airway tree labeling. Experimental results show that our method is fast, stable, and the accuracy of our method is 97.85%, which is higher than that of the traditional skeleton-based method. Graphical Abstract The pipeline of our proposed lobe-based airway tree labeling method. Given a raw CT volume, a neural network structure is designed to predict major bifurcation points of airway tree. Based on the detected points, airway tree is reconstructed and labeled in terms of lobes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-020-02184-yDOI Listing

Publication Analysis

Top Keywords

airway tree
48
bifurcation points
28
tree
13
airway
12
labeling airway
12
points
9
terms lobes
8
bifurcation
8
network structure
8
structure designed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!