Screening, Characterization and Evaluation of Mangiferin Polymorphs.

Nat Prod Bioprospect

Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.

Published: August 2020

Mangiferin is a compound with many pharmacological activities and exists in many natural products. Anhydrous and hydrate of mangiferin have been reported separately in two literatures, but the polymorphism of this compound has not been realized until this paper. In this study, polymorph screening of mangiferin has been carried out and five forms have been obtained including three new forms never reported. Several solid state characterization methods, such as powder X-ray diffraction, differential scanning calorimetry and thermogravimetry, are used to identify and characterize all of mangiferin forms. The comparison of the crystallographic data and hirshfeld surface analysis were first reported for mangiferin anhydrous and hydrate. Furthermore, the studies on stability, transformation and solubility have been undertaken, the results prompt that form V can be used as the dominant polymorph for the development of innovative pharmaceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367950PMC
http://dx.doi.org/10.1007/s13659-020-00247-zDOI Listing

Publication Analysis

Top Keywords

anhydrous hydrate
8
mangiferin
6
screening characterization
4
characterization evaluation
4
evaluation mangiferin
4
mangiferin polymorphs
4
polymorphs mangiferin
4
mangiferin compound
4
compound pharmacological
4
pharmacological activities
4

Similar Publications

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

The title compound, a hydrate of 3,5-di-amino-1,2,4-triazole (DATA), CHN·HO, was synthesized in the presence of sodium perchlorate. The evaporation of HO from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the 2/ space group in the form of needle-shaped crystals with one DATA and one water mol-ecule in the asymmetric unit.

View Article and Find Full Text PDF

Exploring the hydrate landscape using data mining on the Cambridge structural database (CSD).

Int J Pharm

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

With the continued relevance of drug hydrates in pharmaceutical sciences, a comprehensive understanding of hydrate and anhydrate forms is essential, not only through individual case studies but also from a broader, systematic perspective. The Cambridge Structural Database (CSD) is a well-established database for crystal structures of organic molecules and here, the structural features of pharmaceutically relevant compounds forming hydrates were explored. Drug anhydrate and hydrate subsets were generated and further classified into separate anhydrate and hydrate sets for free drug, cocrystal/solvate, salt, multicomponent cocrystal/solvate, and salt cocrystal/solvate systems.

View Article and Find Full Text PDF

The structural and electronic features of the stimuli-responsive supramolecular inter-ionic charge-transfer material containing electron accepting -benzylyridinium-4-oxime cation (BPA4) and electron donating hexacyanoferrate (II) are reported. The study of reversible stimuli-induced transformation between hydrated reddish-brown (BPA4)[Fe(CN)]·10HO and anhydrous blue (BPA4)[Fe(CN)] revealed the origin of observed hydrochromic behavior. The comparison of the crystal structures of decahydrate and anhydrous phase showed that subsequent exclusion/inclusion of lattice water molecules induces structural relocation of one BPA4 that alter the donor-to-acceptor charge-transfer states, resulting in chromotropism seen as reversible reddish-brown to blue color changes.

View Article and Find Full Text PDF

Le Chatelier in 1887 and Powers in 1947 demonstrated that the volume of nanoscale C-S-H (calcium silicate hydrate) particles formed during hydration is smaller than the combined volume of the reactants-the anhydrous Portland cement and water. Hydration has thus been considered as contractive. An experiment shows that the opposite is true above the nanoscale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!