Efficient photodynamic inactivation of Candida albicans by porphyrin and potassium iodide co-encapsulation in micelles.

Photochem Photobiol Sci

Departamento Análises Clínicas, Toxicológicas e Bromatológicas, Facuidade de Ciencias Farmacêuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil.

Published: August 2020

Photodynamic inactivation of bacterial and fungal pathogens is a promising alternative to the extensive use of conventional single-target antibiotics and antifungal agents. The combination of photosensitizers and adjuvants can improve the photodynamic inactivation efficiency. In this regard, it has been shown that the use of potassium iodide (KI) as adjuvant increases pathogen killing. Following our interest in this topic, we performed the co-encapsulation of a neutral porphyrin photosensitizer (designated as P1) and KI into micelles and tested the obtained nanoformulations against the human pathogenic fungus Candida albicans. The results of this study showed that the micelles containing P1 and KI displayed a better photodynamic performance towards C. albicans than P1 and KI in solution. It is noteworthy that higher concentrations of KI within the micelles resulted in increased killing of C. albicans. Subcellular localization studies by confocal fluorescence microscopy revealed that P1 was localized in the cell cytoplasm, but not in the nuclei or mitochondria. Overall, our results show that a nanoformulation containing a photosensitizer plus an adjuvant is a promising approach for increasing the efficiency of photodynamic treatment. Actually, the use of this strategy allows a considerable decrease in the amount of both photosensitizer and adjuvant required to achieve pathogen killing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0pp00085jDOI Listing

Publication Analysis

Top Keywords

photodynamic inactivation
12
candida albicans
8
potassium iodide
8
pathogen killing
8
photosensitizer adjuvant
8
efficient photodynamic
4
inactivation candida
4
albicans
4
albicans porphyrin
4
porphyrin potassium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!