Tissue-engineered whole disc replacements are an emerging treatment strategy for advanced intervertebral disc degeneration. A challenge facing the translation of tissue-engineered disc replacement to clinical use are the opposing needs of initial immobilization to advantage integration contrasted with physiologic loading and its anabolic effects. Here, we utilize our established rat tail model of tissue engineered disc replacement with external fixation to study the effects of remobilization at two time points postimplantation on engineered disc structure, composition, and function. Our results suggest that the restoration of mechanical loading following immobilization enhanced collagen and proteoglycan content within the nucleus pulposus and annulus fibrosus of the engineered discs, in addition to improving the integration of the endplate region of the construct with native bone. Despite these benefits, angulation of the vertebral bodies at the implanted level occurred following remobilization at both early and late time points, reducing tensile failure properties in the remobilized groups compared to the fixed group. These results demonstrate the necessity of restoring physiologic mechanical loading to engineered disc implants in vivo, and the need to transition toward their evaluation in larger animal models with more human-like anatomy and motion compared to the rat tail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323465PMC
http://dx.doi.org/10.1002/jsp2.1086DOI Listing

Publication Analysis

Top Keywords

engineered disc
12
physiologic loading
8
intervertebral disc
8
disc structure
8
tissue-engineered disc
8
disc replacement
8
rat tail
8
time points
8
mechanical loading
8
disc
7

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies.

Acta Biomater

January 2025

Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer.

Sensors (Basel)

December 2024

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.

View Article and Find Full Text PDF
Article Synopsis
  • Accurately determining the mechanical parameters of SiC/SiC composites is essential for designing effective turbine disc structures.
  • A 2D model of these composites was created using CT scanning and machine learning, and their mechanical properties were analyzed through uniaxial tensile tests and genetic algorithms.
  • The study found that simulation results closely matched experimental data, leading to validated finite element models for different turbine disc designs and their damage simulations.
View Article and Find Full Text PDF

Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodes.

Materials (Basel)

December 2024

Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.

This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!