Deep learning predicts microbial interactions from self-organized spatiotemporal patterns.

Comput Struct Biotechnol J

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.

Published: May 2020

AI Article Synopsis

  • Microbial communities exhibit spatial patterns influenced by interspecies interactions, crucial for understanding community dynamics.
  • A supervised deep learning approach, combined with an agent-based model, effectively simulates interactions and predicts microbial behavior in varying spatial domains.
  • The model successfully analyzed real biological data to show context-dependent interactions, proving useful for studying complex microbial communities.

Article Abstract

Microbial communities organize into spatial patterns that are largely governed by interspecies interactions. This phenomenon is an important metric for understanding community functional dynamics, yet the use of spatial patterns for predicting microbial interactions is currently lacking. Here we propose supervised deep learning as a new tool for network inference. An agent-based model was used to simulate the spatiotemporal evolution of two interacting organisms under diverse growth and interaction scenarios, the data of which was subsequently used to train deep neural networks. For small-size domains (100 µm × 100 µm) over which interaction coefficients are assumed to be invariant, we obtained fairly accurate predictions, as indicated by an average R value of 0.84. In application to relatively larger domains (450 µm × 450 µm) where interaction coefficients are varying in space, deep learning models correctly predicted spatial distributions of interaction coefficients without any additional training. Lastly, we evaluated our model against real biological data obtained using and co-cultures treated with polymeric chitin or N-acetylglucosamine, the hydrolysis product of chitin. While can utilize both substrates for growth, lacked the ability to degrade chitin. Consistent with our expectations, our model predicted context-dependent interactions across two substrates, i.e., degrader-cheater relationship on chitin polymers and competition on monomers. The combined use of the agent-based model and machine learning algorithm successfully demonstrates how to infer microbial interactions from spatially distributed data, presenting itself as a useful tool for the analysis of more complex microbial community interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298420PMC
http://dx.doi.org/10.1016/j.csbj.2020.05.023DOI Listing

Publication Analysis

Top Keywords

deep learning
12
microbial interactions
12
interaction coefficients
12
spatial patterns
8
agent-based model
8
interactions
6
microbial
5
deep
4
learning predicts
4
predicts microbial
4

Similar Publications

This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.

View Article and Find Full Text PDF

Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement.

View Article and Find Full Text PDF

Decoding the elite soccer player's psychological profile.

Proc Natl Acad Sci U S A

January 2025

Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.

Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.

View Article and Find Full Text PDF

Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.

Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.

View Article and Find Full Text PDF

The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs.

J Neuroophthalmol

December 2024

Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!