Download full-text PDF

Source
http://dx.doi.org/10.1038/d41586-020-01914-4DOI Listing

Publication Analysis

Top Keywords

quantum fluctuations
4
fluctuations affect
4
affect macroscopic
4
macroscopic objects
4
quantum
1
affect
1
macroscopic
1
objects
1

Similar Publications

Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr Quantum Dots Using a High- Microdisk Cavity.

J Phys Chem Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.

View Article and Find Full Text PDF

The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

A multiscale quantum mechanical (QM)/classical approach is presented that is able to model the optical properties of complex nanostructures composed of a molecular system adsorbed on metal nanoparticles. The latter is described by a combined atomistic-continuum model, where the core is described using the implicit boundary element method (BEM) and the surface retains a fully atomistic picture and is treated employing the frequency-dependent fluctuating charge and fluctuating dipole (ωFQFμ) approach. The integrated QM/ωFQFμ-BEM model is numerically compared with state-of-the-art fully atomistic approaches, and the quality of the continuum/core partition is evaluated.

View Article and Find Full Text PDF

Objective: This study analysed the spatial and temporal patterns of cervical cancer incidence in Addis Ababa from 2012 to 2021.

Design: An ecological study was conducted from 1 September to 30 November 2023 to examine the spatiotemporal trends of cervical cancer incidence.

Setting: The research was conducted in Addis Ababa, the capital city of Ethiopia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!