Recent studies have indicated an association between gut microbiome composition and various disorders, including infectious diseases. The composition of the microbiome differs among ethnicities and countries, possibly resulting in diversified interactions between host immunity and the gut microbiome. Characterization of baseline microbiome composition in healthy people is an essential step for better understanding of the biological interactions associated with individual populations. However, data on the gut/fecal microbiome have not been accumulated for individuals in West Africa. In the present study, we examined the fecal microbiome composition in healthy adults in Ghana. Toward this, 16S rRNA gene libraries were prepared using bacterial fractions derived from 55 Ghanaian adults, which were then subjected to next-generation sequencing. The fecal microbiome of the Ghanaian adults was dominated by Firmicutes (Faecalibacterium, Subdoligranulum, and Ruminococcaceae UCG-014), Proteobacteria (Escherichia-Shigella and Klebsiella), and Bacteroidetes (Prevotella 9 and Bacteroides), consistent with previous observations in African cohorts. Further, our analysis revealed differences in microbiome composition and a lower diversity of the fecal microbiome in the Ghanaian cohort compared with those reported in non-African countries. This is the first study to describe substantial fecal microbiome data obtained using high-throughput metagenomic tools on samples derived from a cohort in Ghana. The data may provide a valuable basis for determining the association between the fecal microbiome and progression of various diseases in West African populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7883/yoken.JJID.2020.469 | DOI Listing |
BMC Nutr
January 2025
Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.
Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).
Sci Rep
January 2025
Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom.
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 311400, China.
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!