Carbon dioxide-induced bioluminescence increase in larvae.

J Exp Biol

School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

Published: August 2020

larvae utilise bioluminescence to lure small arthropod prey into their web-like silk snares. The luciferin-luciferase light-producing reaction occurs in a specialised light organ composed of Malpighian tubule cells in association with a tracheal mass. The accepted model for bioluminescence regulation is that light is actively repressed during the non-glowing period and released when glowing through the night. The model is based upon foregoing observations that carbon dioxide (CO) - a commonly used insect anaesthetic - produces elevated light output in whole, live larvae as well as isolated light organs. Alternative anaesthetics were reported to have a similar light-releasing effect. We set out to test this model in larvae by exposing them to a range of anaesthetics and gas mixtures. The anaesthetics isoflurane, ethyl acetate and diethyl ether did not produce high bioluminescence responses in the same way as CO Ligation and dissection experiments localised the CO response to the light organ rather than it being a response to general anaesthesia. Exposure to hypoxia through the introduction of nitrogen gas combined with CO exposures highlighted that continuity between the longitudinal tracheal trunks and the light organ tracheal mass is necessary for recovery of the CO-induced light response. The physiological basis of the CO-induced bioluminescence increase remains unresolved, but is most likely related to access of oxygen to the photocytes. The results suggest that the repression model for bioluminescence control can be rejected. An alternative is proposed based on neural upregulation modulating bioluminescence intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.225151DOI Listing

Publication Analysis

Top Keywords

light organ
12
bioluminescence increase
8
tracheal mass
8
model bioluminescence
8
bioluminescence
7
light
7
carbon dioxide-induced
4
dioxide-induced bioluminescence
4
larvae
4
increase larvae
4

Similar Publications

Redox regulation of focal adhesions.

Redox Biol

January 2025

Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark. Electronic address:

Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism.

View Article and Find Full Text PDF

The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.

View Article and Find Full Text PDF

The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism .

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.

View Article and Find Full Text PDF

Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!