RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of regulates expression. Our results are consistent with a model in which a slow rate of translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491331 | PMC |
http://dx.doi.org/10.1261/rna.075986.120 | DOI Listing |
Sci Rep
January 2025
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland.
Mares with endometrosis exhibit histological changes not only in the endometrium but also in the myometrium that suggest possible functional impairment. The molecular background of these changes is not well understood. We hypothesize that the transcriptomic profile of the mare myometrium varies depending on the degree of endometrosis in mares.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.
View Article and Find Full Text PDFStructure
January 2025
Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. Electronic address:
NSUN6 preferentially catalyzes the methylation of cytosine nucleotides in mRNA substrates, which enhances transcription. Dysregulation of NSUN6 catalysis drives the oncogenesis of certain cancers. In this study, we determined the crystal structure of human NSUN6 in complex with its S-adenosyl-L-methionine analog and a bound NECT-2 3'-UTR RNA substrate at 2.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:
Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.
Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.
Sci China Life Sci
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!