Osteoclasts are giant multinucleated myeloid cells specialized for bone resorption, which is essential for the preservation of bone health throughout life. The activity of osteoclasts relies on the typical organization of osteoclast cytoskeleton components into a highly complex structure comprising actin, microtubules and other cytoskeletal proteins that constitutes the backbone of the bone resorption apparatus. The development of methods to differentiate osteoclasts in culture and manipulate them genetically, as well as improvements in cell imaging technologies, has shed light onto the molecular mechanisms that control the structure and dynamics of the osteoclast cytoskeleton, and thus the mechanism of bone resorption. Although essential for normal bone physiology, abnormal osteoclast activity can cause bone defects, in particular their hyper-activation is commonly associated with many pathologies, hormonal imbalance and medical treatments. Increased bone degradation by osteoclasts provokes progressive bone loss, leading to osteoporosis, with the resulting bone frailty leading to fractures, loss of autonomy and premature death. In this context, the osteoclast cytoskeleton has recently proven to be a relevant therapeutic target for controlling pathological bone resorption levels. Here, we review the present knowledge on the regulatory mechanisms of the osteoclast cytoskeleton that control their bone resorption activity in normal and pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.244798 | DOI Listing |
Cells
October 2024
Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
Rufy4, a protein belonging to the RUN and FYVE domain-containing protein family, participates in various cellular processes such as autophagy and intracellular trafficking. However, its role in osteoclast-mediated bone resorption remains uncertain. In this study, we investigated the expression and role of the gene in osteoclasts using small interfering RNA (siRNA) transfection and gene overexpression systems.
View Article and Find Full Text PDFSmall Methods
October 2024
Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
Human parathyroid hormone (1-34) (PTH) exhibits osteoanabolic and osteocatabolic effects, with shorter plasma exposure times favoring bone formation. Subcutaneous injection (SCI) is the conventional delivery route for PTH but faces low delivery efficiency due to limited passive diffusion and the obstruction of the vascular endothelial barrier, leading to prolonged drug exposure times and reduced osteoanabolic effects. In this work, a microcurrent delivery system (MDS) based on multimicrochannel microneedle arrays (MMAs) is proposed, achieving high efficiency and safety for PTH transdermal delivery.
View Article and Find Full Text PDFJ Periodontal Res
August 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
Aims: Orthodontic treatment commonly results in orthodontically induced inflammatory root resorption (OIIRR). This condition arises from excessive orthodontic force, which triggerslocal inflammatory responses and impedes cementoblasts' mineralization capacity. Low-intensity pulsed ultrasound (LIPUS) shows potential in reducing OIIRR.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause.
View Article and Find Full Text PDFBone Res
June 2024
Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
DNAX-associated protein 12 kD size (DAP12) is a dominant immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptor that activates costimulatory signals essential for osteoclastogenesis. Although several DAP12-associated receptors (DARs) have been identified in osteoclasts, including triggering receptor expressed on myeloid cells 2 (TREM-2), C-type lectin member 5 A (CLEC5A), and sialic acid-binding Ig-like lectin (Siglec)-15, their precise role in the development of osteoclasts and bone remodeling remain poorly understood. In this study, mice deficient in Trem-2, Clec5a, Siglec-15 were generated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!