Background: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras.

Methods: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. Morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome c oxidase 1 gene (cox1) and the ribosomal internal transcribed spacer 2 (ITS2).

Results: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for cox1 and ITS2, respectively. Both markers confirmed the morphological identification. cox1 showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis and An. neivai are reported in this study.

Conclusions: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329488PMC
http://dx.doi.org/10.1186/s13071-020-04203-1DOI Listing

Publication Analysis

Top Keywords

genetic diversity
20
anopheles species
16
diversity anopheles
12
morphological identification
12
anopheles
8
malaria endemic
8
endemic areas
8
anopheles mosquitoes
8
distribution genetic
8
diversity
7

Similar Publications

Identification of genetic variants of the gene in association with COPD susceptibility.

Ann Med

December 2025

Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.

Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.

Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).

View Article and Find Full Text PDF

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis.

View Article and Find Full Text PDF

Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!