Background: Protein engineering has many applications for industry, such as the development of new drugs, vaccines, treatment therapies, food, and biofuel production. A common way to engineer a protein is to perform mutations in functionally essential residues to optimize their function. However, the discovery of beneficial mutations for proteins is a complex task, with a time-consuming and high cost for experimental validation. Hence, computational approaches have been used to propose new insights for experiments narrowing the search space and reducing the costs.
Results: In this study, we developed Proteus (an acronym for Protein Engineering Supporter), a new algorithm for proposing mutation pairs in a target 3D structure. These suggestions are based on contacts observed in other known structures from Protein Data Bank (PDB). Proteus' basic assumption is that if a non-interacting pair of amino acid residues in the target structure is exchanged to an interacting pair, this could enhance protein stability. This trade is only allowed if the main-chain conformation of the residues involved in the contact is conserved. Furthermore, no steric impediment is expected between the proposed mutations and the surrounding protein atoms. To evaluate Proteus, we performed two case studies with proteins of industrial interests. In the first case study, we evaluated if the mutations suggested by Proteus for four protein structures enhance the number of inter-residue contacts. Our results suggest that most mutations proposed by Proteus increase the number of interactions into the protein. In the second case study, we used Proteus to suggest mutations for a lysozyme protein. Then, we compared Proteus' outcomes to mutations with available experimental evidence reported in the ProTherm database. Four mutations, in which our results agree with the experimental data, were found. This could be initial evidence that changes in the side-chain of some residues do not cause disturbances that harm protein structure stability.
Conclusion: We believe that Proteus could be used combined with other methods to give new insights into the rational development of engineered proteins. Proteus user-friendly web-based tool is available at < http://proteus.dcc.ufmg.br >.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330979 | PMC |
http://dx.doi.org/10.1186/s12859-020-03575-6 | DOI Listing |
Food Chem
December 2024
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China. Electronic address:
The effects of dairy sterilization techniques (65 °C/30 min, 72 °C/15 s, 85 °C/15 s, 100 °C/5 min, and 121 °C/5 s) on the epigallocatechin-3-gallate-casein (EGCG-CS) complexes were investigated through the structural and functional characteristics in this work. Fourier transform infrared spectroscopy (FT-IR) detection showed the redshirting of the absorption peak suggested structural changes in the amide I area. Field emission scanning electron microscopy (FESEM) and viscosity measurements proved that treatments above 85 °C broke non-covalent bonds, leading to instability and low viscosity of EGCG-CS.
View Article and Find Full Text PDFFood Chem
December 2024
KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. Electronic address:
Due to compositional differences, the mouthfeel of non-alcoholic beers (NABs) is considered inferior to that of alcoholic beers (ABs). Carbonation properties are a key sensation regarding mouthfeel. This study quantified the amount of bubbles in ABs (n = 10) and NABs (n = 9), ranging from 3.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.
View Article and Find Full Text PDFNeoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFPLoS One
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!