Background: Nicotiana benthamiana is widely used as a model plant to study plant-pathogen interactions. Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development and response to abiotic stress. However, the members of FLAs in N. benthamiana and their response to plant pathogens are unknown.
Results: 38 NbFLAs were identified from a genome-wide study. NbFLAs could be divided into four subclasses, and their gene structure and motif composition were conserved in each subclass. NbFLAs may be regulated by cis-acting elements such as STRE and MBS, and may be the targets of transcription factors like C2H2. Quantitative real time polymerase chain reaction (RT-qPCR) results showed that selected NbFLAs were differentially expressed in different tissues. All of the selected NbFLAs were significantly downregulated following infection by turnip mosaic virus (TuMV) and most of them also by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000), suggesting possible roles in response to pathogenic infection.
Conclusions: This study systematically identified FLAs in N. benthamiana, and indicates their potential roles in response to biotic stress. The identification of NbFLAs will facilitate further studies of their role in plant immunity in N. benthamiana.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329489 | PMC |
http://dx.doi.org/10.1186/s12870-020-02501-5 | DOI Listing |
Int J Biol Macromol
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Plant Physiol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
, a desert shrub known for its impressive drought tolerance, exhibits notable resilience under arid conditions. However, the underlying mechanisms driving its drought resistance remain largely unexplored. This study aims to investigate these mechanisms by exposing to osmotic stress using varying polyethylene glycol (PEG) concentrations (1%, 5%, 10%) in a controlled laboratory setting.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
Background: Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia.
Cultivated cotton plants are the world's largest source of natural fibre, where yield and quality are key traits for this renewable and biodegradable commodity. The cotton genome contains ~80K protein-coding genes, making precision breeding of complex traits a challenge. This study tested approaches to improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to help accelerate precision breeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!