Rationale: The efficient resolution of tissue hemorrhage is an important homeostatic function. In human macrophages in vitro, heme activates an AMPK (AMP-activated protein kinase)/ATF1 (activating transcription factor-1) pathway that directs Mhem macrophages through coregulation of HO-1 (heme oxygenase-1; ) and lipid homeostasis genes.
Objective: We asked whether this pathway had an in vivo role in mice.
Methods And Results: Perifemoral hematomas were used as a model of hematoma resolution. In mouse bone marrow-derived macrophages, heme induced HO-1, lipid regulatory genes including LXR (lipid X receptor), the growth factor IGF1 (insulin-like growth factor-1), and the splenic red pulp macrophage gene . This response was lost in bone marrow-derived macrophages from mice deficient in AMPK () or ATF1 (). In vivo, femoral hematomas resolved completely between days 8 and 9 in littermate control mice (n=12), but were still present at day 9 in mice deficient in either AMPK () or ATF1 (; n=6 each). Residual hematomas were accompanied by increased macrophage infiltration, inflammatory activation and oxidative stress. We also found that fluorescent lipids and a fluorescent iron-analog were trafficked to lipid-laden and iron-laden macrophages respectively. Moreover erythrocyte iron and lipid abnormally colocalized in the same macrophages in mice. Therefore, iron-lipid separation was -dependent.
Conclusions: Taken together, these data demonstrate that both AMPK and ATF1 are required for normal hematoma resolution. Graphic Abstract: An online graphic abstract is available for this article.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7478221 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.119.315528 | DOI Listing |
JACC Clin Electrophysiol
December 2024
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:
Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.
Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.
Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Cardiovascular & Thoracic Anaesthesia and Critical Care, University Hospital of Martinique, F-97200 Fort-de-France, Martinique, France.
Acute cardiovascular disorders are incriminated in up to 33% of maternal deaths, and the presence of sickle cell anemia (SCA) aggravates the risk of peripartum complications. Herein, we present a 24-year-old Caribbean woman with known SCA who developed a vaso-occlusive crisis at 36 weeks of gestation that required emergency Cesarean section. In the early postpartum period, she experienced fever with rapid onset of acute respiratory distress in the context of COVID-19 infection that required tracheal intubation and mechanical ventilatory support with broad-spectrum antibiotics and blood exchange transfusion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA.
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most prevalent liver disease worldwide. It is associated with an increased risk of developing hepatocellular carcinoma (HCC) in the background of cirrhosis or without cirrhosis. The prevalence of NAFLD-related HCC is increasing all over the globe, and HCC surveillance in NAFLD cases is not that common.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
Fertility disorders are a worldwide problem affecting 8-12% of the population, with the male factor substantially contributing to about 40-50% of all infertility cases. Mitochondria, crucial organelles for cellular viability, play a pivotal role in the processes of spermatogenesis and significantly affect sperm quality and their fertilizing ability. Mitochondrial oxidative phosphorylation (OXPHOS) dysfunction, reduced energy supply for sperm, reduced endogenous coenzyme Q (CoQ) levels, and oxidative stress are among the main factors that contribute to male infertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!