A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing plasma-treated graphene using hyperspectral Raman. | LitMetric

Probing plasma-treated graphene using hyperspectral Raman.

Rev Sci Instrum

Département de Physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.

Published: June 2020

Raman spectroscopy provides rich optical signals that can be used, after data analysis, to assess if a graphene layer is pristine, doped, damaged, functionalized, or stressed. The area being probed by a conventional Raman spectrometer is, however, limited to the size of the laser beam (∼1 µm); hence, detailed mapping of inhomogeneities in a graphene sample requires slow and sequential acquisition of a Raman spectrum at each pixel. Studies of physical and chemical processes on polycrystalline and heterogeneous graphene films require more advanced hyperspectral Raman capable of fast imaging at a high spatial resolution over hundreds of microns. Here, we compare the capacity of two different Raman imaging schemes (scanning and global) to probe graphene films modified by a low-pressure plasma treatment and present an analysis method providing assessments of the surface properties at local defects, grain boundaries, and other heterogeneities. By comparing statistically initial and plasma-treated regions of graphene, we highlight the presence of inhomogeneities after plasma treatment linked to the initial state of the graphene surface. These results provided statistical results on the correlation between the graphene initial state and the corresponding graphene-plasma interaction. This work further demonstrates the potential use of global hyperspectral Raman imaging with advanced Raman spectra analysis to study graphene physics and chemistry on a scale of hundreds of microns.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0006556DOI Listing

Publication Analysis

Top Keywords

hyperspectral raman
12
graphene
9
raman
8
graphene films
8
hundreds microns
8
raman imaging
8
plasma treatment
8
initial state
8
probing plasma-treated
4
plasma-treated graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!