Near-infrared spectroscopy has become a well-known remote sensing technique for the surface characterization of planetary objects. Among them, Mars was observed in the past by three imaging spectrometers from orbit. The Infrared Spectrometer/SuperCam instrument performs near-infrared spectroscopy from the martian surface for the first time, with a 1.15 mrad field of view, in the 1.3 µm-2.6 µm range, enabling the identification of a variety of mafic and altered minerals. Before integration aboard the rover, the spectrometer underwent a calibration campaign. Here, we report the radiometric and linearity responses of the instrument, including the optical and thermal setups used to perform them over its nominal range of operations, in terms of instrument detector temperatures and spectral range. These responses were constrained by accuracy requirements (20% in absolute radiometry, 1% in relative). The derived instrument transfer function fits within these requirements (<15% in absolute and <0.8% in relative) and shall be used to calculate the expected instrumental signal-to-noise ratio for typical observation scenarios of mineral mixtures expected to be found in the Jezero crater, and ultimately to retrieve the spectral properties of the regions of interest observed by the rover.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5145390DOI Listing

Publication Analysis

Top Keywords

near-infrared spectroscopy
8
pre-launch radiometric
4
radiometric calibration
4
calibration infrared
4
infrared spectrometer
4
spectrometer onboard
4
onboard supercam
4
supercam mars2020
4
mars2020 rover
4
rover near-infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!