Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We recently derived a new and simple route to the determination of the range-separation parameter in range-separated exchange hybrid and double-hybrid density functionals by imposing an additional constraint to the exchange-correlation energy to recover the total energy of the hydrogen atom [Brémond et al., J. Chem. Phys. 15, 201102 (2019)]. Here, we thoroughly assess this choice by statistically comparing the derived values of the range-separation parameters to the ones obtained using the optimal tuning (OT) approach. We show that both approaches closely agree, thus, confirming the reliability of ours. We demonstrate that it provides very close performances in the computation of properties particularly prone to the one- and many-electron self-interaction errors (i.e., ionization potentials). Our approach arises as an alternative to the OT procedure, conserving the accuracy and efficiency of a standard Kohn-Sham approach to density-functional theory computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0010976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!