Herein, we employ classical molecular dynamics simulations using the Drude oscillator-based polarizable force field, quantum chemical calculations, and ONIOM multiscale calculations to study (a) how an external field orders the solvent environment in a chemical reaction and then (b) whether in the absence of this same applied field the ordered solvent environment alone can electrostatically catalyze a chemical reaction when compared with the corresponding disordered solvent. Our results show that a 0.2 V/Å external electric field, which is below the threshold for bond breaking of solvent molecules, leads to significant ordering of bulk methanol solvent and the ionic liquid [EMIM][BF]. Importantly, in the absence of this same field, the ordered solvent lowers the activation energy of the hydrogen-transfer reaction of -alkylphenyl ketones in excess of 20 kcal/mol when the solvent is methanol and by over 30 kcal/mol for [EMIM][BF]. Even a 0.1 V/Å external field has effects of ca. 10 and 20 kcal/mol, respectively. This work suggests a possible strategy for scaling electrostatic catalysis by applying a pulsed external field to the reaction medium to maintain solvent ordering while allowing the reaction to proceed largely in the absence of an external field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c05643 | DOI Listing |
J Ocul Pharmacol Ther
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey.
Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
SrFeO (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO (BM-SFO) phase and a conductive perovskite SrFeO (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center for Physical Sciences and Technology, Saulėtekio av.3, 10257 Vilnius, Lithuania.
Understanding the dynamics of injected charge carriers is crucial for the analysis of the perovskite light-emitting diode (PeLED) operation. The behavior of the injected carriers largely dictates the external quantum efficiency (EQE) roll-off at high current densities and the temperature dependence of the EQE in PeLEDs. However, limitations such as sample capacitance and external circuitry hinder precise control of carrier injection rates, making it challenging to directly track the dynamics of individual carriers.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!