The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel.

Micromachines (Basel)

Department of Manufacturing Technology and Metrology, Kielce University of Technology, 25-314 Kielc, Poland.

Published: June 2020

Laser technologies for fast prototyping using metal powder-based materials allow for faster production of prototype constructions actually used in the tooling industry. This paper presents the results of measurements on the surface texture of flat samples and the surface texture of a prototype of a reduced-mass lathe chuck, made with the additive technology-powder bed fusion. The paper presents an analysis of the impact of samples' orientation on the building platform on the surface geometrical texture parameters (two-dimensional roughness profile parameters (, , , and so on) and spatial parameters (, , and so on). The research results showed that the printing orientation has a very large impact on the quality of the surface texture and that it is possible to set digital models on the building platform (parallel-0° to the building platform plane), allowing for manufacturing models with low roughness parameters. This investigation is especially important for the design and 3D printing of microelectromechanical systems (MEMS) models, where surface texture quality and printable resolution are still a large problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407933PMC
http://dx.doi.org/10.3390/mi11070639DOI Listing

Publication Analysis

Top Keywords

surface texture
20
building platform
12
printing orientation
8
texture parameters
8
bed fusion
8
paper presents
8
surface
6
texture
6
parameters
5
influence printing
4

Similar Publications

The quantitative characterization of the structure of biomineral surfaces is needed for guiding regenerative strategies. Current techniques are compromised by a requirement for extensive sample preparation, limited length-scales, or the inability to repeatedly measure the same surface over time and monitor structural changes. We aim to address these deficiencies by developing Calcium (Ca) K-edge Polarisation Induced Contrast X-ray Fluorescence (PIC-XRF) to quantify hydroxyapatite (HAp) crystallite structural arrangements in high and low textured surfaces.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).

View Article and Find Full Text PDF

Based on the Geometric Characteristics of Binocular Imaging for Yarn Remaining Detection.

Sensors (Basel)

January 2025

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

The automated detection of yarn margins is crucial for ensuring the continuity and quality of production in textile workshops. Traditional methods rely on workers visually inspecting the yarn margin to determine the timing of replacement; these methods fail to provide real-time data and cannot meet the precise scheduling requirements of modern production. The complex environmental conditions in textile workshops, combined with the cylindrical shape and repetitive textural features of yarn bobbins, limit the application of traditional visual solutions.

View Article and Find Full Text PDF

The quality of surface morphology can reflect the electrical performance of silver-based contacts. Existing research on the correlation of morphological-electrical performance is based solely on empirical models from traditional visual inspections and only considers the impact of visually observable macro-textural features on electrical performance. However, the influence of micro-textural features on electrical performance should not be overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!