Nanocomposite fibers based on poly(butylene terephthalate) (PBT) and reduced graphene oxide (rGO) were prepared using a method able to disperse graphene in one step into a polymer matrix. The studies were performed for fibers containing four different concentrations of rGO at different take-up velocities. The supermolecular structures of the fibers at the crystallographic and lamellar levels were examined by means of calorimetric and X-ray scattering methods (DSC, WAXS, and SAXS). It was found that the fiber structure is mainly influenced by the take-up velocity. Fibers spun at low and medium take-up velocities contained a crystalline α-form, whereas the fibers spun at a high take-up velocity contained a smectic mesophase. During annealing, the smectic phase transformed into its α-form. The degree of transformation depended on the rGO content. Reduced graphene mainly hindered the crystallization of PBT by introducing steric obstacles confining the ordering of the macromolecules of PBT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407616 | PMC |
http://dx.doi.org/10.3390/polym12071456 | DOI Listing |
Langmuir
January 2025
Centre for Nano and Soft Matter Sciences, Shivanapura, Dasanapura Hobli, Bangalore 562162, India.
The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.
View Article and Find Full Text PDFSe Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
With the development of cities, the issue of excess nitrate in wastewater has become increasingly severe. Electrochemical technology has garnered significant attention due to its straightforward operation and environmental sustainability. A CoO/GF cathode was successfully prepared by depositing CoO onto Graphite felt (GF) using an electrochemical deposition-calcination method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!