Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting approximately one-third of the global population. Most affected individuals experience only simple steatosis-an accumulation of fat in the liver-but a proportion of these patients will progress to the more severe form of the disease, non-alcoholic steatohepatitis (NASH), which enhances the risk of cirrhosis and hepatocellular carcinoma. Diagnostic approaches to NAFLD are currently limited in accuracy and efficiency; and liver biopsy remains the only reliable way to confirm NASH. This technique, however, is highly invasive and poses risks to patients. Hence, there is an increasing demand for improved minimally invasive diagnostic tools for screening at-risk individuals and identifying patients with more severe disease as well as those likely to progress to such stages. Recently, extracellular vesicles (EVs)-small membrane-bound particles released by virtually all cell types into circulation-have emerged as a rich potential source of biomarkers that can reflect liver function and pathological processes in NAFLD. Of particular interest to the diagnosis and tracking of NAFLD is the potential to extract microRNAs miR-122 and miR-192 from EVs circulating in blood, particularly when using an isolation technique that selectively captures hepatocyte-derived EVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409057 | PMC |
http://dx.doi.org/10.3390/jcm9072032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!