The kinetics of circulating cell-free DNA (cfDNA) release may provide a real-time assessment of induced cell death. However, there is a limited understanding of the underlying biological rationale for cfDNA release following distinct treatments and cell death mechanisms. Here, we uncover a complex interplay between apoptosis, necrosis, and senescence in determining cfDNA release kinetics. Utilizing multiple in vitro and in vivo preclinical models, we show how cfDNA release is modulated through a combination of apoptotic and senescent triggers and inhibitors. Interestingly, we identify treatment-induced senescence as a previously unrecognized determinant of cfDNA kinetics that can counteract its release. Necrosis is the predominant cell death mechanism that consistently contributes to cfDNA release in response to ionizing radiation, and, surprisingly, apoptosis plays a comparatively minor role in some tumors. Based on our results, we propose a model to explain cfDNA release from cells over time, with important implications for future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2020.107830 | DOI Listing |
Transl Psychiatry
January 2025
Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health.
View Article and Find Full Text PDFOncotarget
January 2025
Laboratory of Molecular Pathology of Cancer, Faculty of Healthy Sciences, University of Brasília, Federal District, Brasília, Brazil.
Approximately two-thirds of patients with colorectal cancer (CRC) undergo resection with curative intent; however, 30% to 50% of these patients experience recurrence. The concentration of cell-free DNA (cfDNA) before and after surgery may be related to the prognosis of patients with CRC, but there is limited information regarding cfDNA levels at the time of surgery. Here, we analyzed surgical cfDNA release using plasma samples from 30 colorectal cancer patients at three key points during surgery: preoperative (immediately before surgery), intraoperative (during surgery), and postoperative (at the end of surgery).
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.
Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!