After fertilization, sperm and oocyte nuclei are rapidly remodeled to form swollen pronuclei (PN) in mammalian zygotes, and the proper formation and function of PN are key to producing totipotent zygotes. However, how mature PN are formed has been unclear. We find that filamentous actin (F-actin) assembles in the PN of mouse zygotes and is required for fully functional PN. The perturbation of nuclear actin dynamics in zygotes results in the misregulation of genes related to genome integrity and abnormal development of mouse embryos. We show that nuclear F-actin ensures DNA damage repair, thus preventing the activation of a zygotic checkpoint. Furthermore, optogenetic control of cofilin nuclear localization reveals the dynamically regulated F-actin nucleoskeleton in zygotes, and its timely disassembly is needed for developmental progression. Nuclear F-actin is a hallmark of totipotent zygotic PN, and the temporal regulation of its polymerized state is necessary for normal embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2020.107824 | DOI Listing |
Cells
January 2025
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
Macrophages encounter a myriad of biochemical and mechanical stimuli across various tissues and pathological contexts. Notably, matrix rigidity has emerged as a pivotal regulator of macrophage activation through mechanotransduction. However, the precise mechanisms underlying the interplay between mechanical and biochemical cues within the nuclear milieu remain elusive.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!