A lack of N95 Filtering Facepiece Respirators (FFRs) during the COVID-19 crisis has placed healthcare workers at risk. It is important for any N95 reuse strategy to determine the effects that proposed protocols would have on the physical functioning of the mask, as well as the practical aspects of implementation. Here we propose and implement a method of heating N95 respirators with moisture (85°C, 60-85% humidity). We test both mask filtration efficiency and fit to validate this process. Our tests focus on the 3M 1860, 3M 1870, and 3M 8210 Plus N95 models. After five cycles of the heating procedure, all three respirators pass both quantitative fit testing (score of >100) and show no degradation of mask filtration efficiency. We also test the Chen Heng V9501 KN95 and HKYQ N95 finding no degradation of mask filtration efficiency, however even for unheated masks these scored <50 for every fit test. The heating method presented here is scalable from individual masks to over a thousand a day with a single industrial convection oven, making this method practical for local application inside health-care facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329057PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234851PLOS

Publication Analysis

Top Keywords

mask filtration
12
filtration efficiency
12
n95 respirators
8
covid-19 crisis
8
degradation mask
8
n95
6
scalable method
4
method applying
4
applying heat
4
heat humidity
4

Similar Publications

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

Frog tongue-inspired wettable microfibers for particles capture.

Sci Bull (Beijing)

November 2024

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518071, China; Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, China. Electronic address:

Fibers have been of great significance in our daily lives, especially in the industrial production of masks. Research in this area has been focused on developing microfibers with superior functions to enhance the filtration performances of the masks. Herein, inspired by the frog's predation mechanism using its tongues to swiftly grab flying insects, we propose novel porous wettable microfibers from microfluidics to efficiently capture particles in the air for filtration.

View Article and Find Full Text PDF

Fabrication of microplastic-free biomass-based masks: Enhanced multi-functionality with all-natural fibers.

J Hazard Mater

December 2024

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China. Electronic address:

With the coronavirus-2019 epidemic, disposable surgical masks have become a common personal protective necessity. However, off-the-shelf masks have low filtration efficiency and short service life and can only physically isolate pathogens, easily leading to secondary infection and cross-infection between users. Additionally, they produce debris and microplastics, which can be inhaled by the human body and cause serious diseases.

View Article and Find Full Text PDF

Health care images contain a variety of imaging information that has specific features, which can make it challenging to assess and decide on the methods necessitated to safeguard the highly classified visuals from unauthorized exposure during transmission in a communication channel. As a result, this proposed approach utilizes a variety of techniques that will enhance the quality of textual healthcare images, communicate information securely, and interpret textual data from healthcare visuals without difficulty. Natural interference, primarily on the receiver side, reduces text-based healthcare image contrast, and numerous artifacts and adjacent picture element values impede diagnosis.

View Article and Find Full Text PDF

Review on need for designing sustainable and biodegradable face masks: Opportunities for nanofibrous cellulosic filters.

Int J Biol Macromol

December 2024

Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India. Electronic address:

The surge in microbial illnesses, notably seen during the COVID-19 pandemic, has led to the global use of face masks-cloth, surgical, medical, and respirator types-to curb respiratory pathogen spread. Widely used by the public, patients, and healthcare workers, masks play a key role in reducing airborne transmission. However, synthetic, non-biodegradable materials in these masks have sparked environmental concerns due to disposal issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!