The orbital angular momentum conservation of light reveals different diffraction patterns univocally dependent on the topological charge of the incident light beam when passing through a triangular aperture. It is demonstrated that these patterns, which are accessed by observing the far-field measurement of the diffracted light, can also be obtained using few photon sources. In order to explain the observed patterns, we introduce an analogy of this optical phenomenon with the study of diffraction for the characterization of the crystal structure of solids. We demonstrate that the finite pattern can be associated with the reciprocal lattice obtained from the direct lattice generated by the primitive vectors composing any two of the sides of the equilateral triangular slit responsible for the diffraction. Using the relation that exists between the direct and reciprocal lattices, we provide a conclusive explanation as to why the diffraction pattern of the main maxima is finite. This can shed a new light on the investigation of crystallographic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.394745 | DOI Listing |
Phys Rev Lett
December 2024
Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, 430074 Wuhan, China.
The frustrated honeycomb spin model can stabilize a subextensively degenerate spiral spin liquid with nontrivial topological excitations and defects, but its material realization remains rare. Here, we report the experimental realization of this model in the structurally disorder-free compound GdZnPO. Using a single-crystal sample, we find that spin-7/2 rare-earth Gd^{3+} ions form a honeycomb lattice with dominant second-nearest-neighbor antiferromagnetic and first-nearest-neighbor ferromagnetic couplings, along with easy-plane single-site anisotropy.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Walter Schottky Institut, Technical University of Munich, Garching 85748, Germany.
InAs semiconductor quantum dots (QDs) emitting in the near-infrared are promising platforms for on-demand single-photon sources and spin-photon interfaces. However, the realization of quantum-photonic nanodevices emitting in the telecom windows with similar performance remains an open challenge. In particular, nanophotonic devices incorporating quantum light emitting diodes in the telecom C-band based on GaAs substrates are still lacking due to the relaxation of the lattice constant along the InGaAs graded layer which makes the implementation of electrically contacted devices challenging.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
Flexoelectric coefficient is a tetradic and its introduction enables centrosymmetric materials to exhibit piezoelectricity. However, the flexoelectric paradigm currently lacks a strategy to effectively tune the strain gradient for optimal electro-mechanical coupling. This study proposes a quantized collision model accessible through ionic irradiation technology to explore the flexoelectricity and precisely modulate the strain gradient.
View Article and Find Full Text PDFNano Lett
December 2024
Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France.
Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices.
View Article and Find Full Text PDFPLoS One
December 2024
Biologic Institute, Redmond, WA, United States of America.
A key question in protein evolution and protein engineering is the prevalence of evolutionary paths between distinct proteins. An evolutionary path corresponds to a continuous path of functional sequences in sequence space leading from one protein to another. Natural selection could direct a mutating coding region in DNA along a continuous functional path (CFP), so a new protein could arise far more easily than if a coding region were randomly mutating without any constraints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!