Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a novel method based on Huygens' principle and compressive sensing to predict the electromagnetic (EM) fields in arbitrary scattering environments by making a few measurements of the field. In doing so, we assume a homogeneous medium between the scatterers, though we do not assume prior knowledge of the permittivities or the exact geometry of the scatterers. The major contribution of this work is a compressive sensing-based subspace optimization method (CS-SOM). Using this, we show that the EM fields in an indoor situation with up to four scattering objects can be reconstructed with approximately 12% error, when the number of measurements is only 55% of the number of variables used to formulate the problem. Our technique departs significantly from traditional ray tracing approaches. We use a surface integral formulation which captures wave-matter interactions exactly, leverage compressive sensing techniques so that field measurements at a few random locations suffice, and apply Huygens' principle to predict the fields at any location in space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.388136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!