Intrinsic Color Sensing System Allows for Real-Time Observable Functional Changes on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

ACS Nano

Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China.

Published: July 2020

Stem-cell based differentiation for disease modeling offers great value to explore the molecular and functional underpinnings driving many types of cardiomyopathy and congenital heart diseases. Nevertheless, one major caveat in the application of differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) involves the immature phenotype of the CMs. Most of the existing methods need complex apparatus and require laborious procedures in order to monitor the cardiac differentiation/maturation process and often result in cell death. Here we developed an intrinsic color sensing system utilizing a microgroove structural color methacrylated gelatin film, which allows us to monitor the cardiac differentiation process of hiPSC-derived cardiac progenitor cells in real time. Subsequently this system can be employed as an assay system to live monitor induced functional changes on hiPSC-CMs stemming from drug treatment, the effects of which are simply revealed through color diversity. Our research shows that early intervention of cardiac differentiation through simple physical cues can enhance cardiac differentiation and maturation to some extent. Our system also simplifies the previous complex experimental processes for evaluating the physiological effects of successful differentiation and drug treatment and lays a solid foundation for future transformational applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c01745DOI Listing

Publication Analysis

Top Keywords

cardiac differentiation
12
intrinsic color
8
color sensing
8
sensing system
8
functional changes
8
human induced
8
induced pluripotent
8
pluripotent stem
8
monitor cardiac
8
drug treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!