An anoxic membrane bioreactor-microalgae membrane reactor coupling system (anoxic MBR-MMR) was used to deal with mariculture wastewater. Pre-anoxic MBR was used for the degradation of organic matter, NO-N and NO-N, and the released NH-N entered MMR for microalgae growth and was removed. Meanwhile, the treatment efficiency and the microalgae recovery were studied, and the membrane fouling behavior was investigated. After running for 91 days, the removal rates of the system toward NO-N and NH-N were stable at above 90.0% and 88.0%, respectively. Furthermore, the average removal rates of PO-P and TOC were 49.4% and 84.7%, respectively. Under the condition that the microalgae were harvested continuously, the biomass can be stably operated at an average concentration of 9×10 cells·mL and good removal efficiency and resource utilization could be achieved. Through infrared spectrum and three-dimensional fluorescence spectrum analysis, the main substances causing membrane fouling in MMR were tryptophan proteins and humic acids. The membrane fouling in MMR was lighter than that in anoxic MBR.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201910057DOI Listing

Publication Analysis

Top Keywords

membrane fouling
16
mariculture wastewater
8
removal rates
8
fouling mmr
8
membrane
5
[performance membrane
4
fouling
4
fouling characteristics
4
characteristics mariculture
4
wastewater treated
4

Similar Publications

Conductive materials enhance anaerobic membrane bioreactor (AnMBR) treating waste leachate at high organic loading rates.

J Environ Manage

January 2025

College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China. Electronic address:

The treatment of landfill leachate using anaerobic membrane bioreactors (AnMBRs) often faces challenges such as poor removal efficiency, low methane yield and membrane fouling. This study applied AnMBRs with incrementally adding conductive materials to enhance the treatment of landfill leachate under high organic loading rates(35 kg COD/(m∙d)). With 50 g/L activated carbon, COD removal percentages and methane yield increased to 81.

View Article and Find Full Text PDF

Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

Polymers (Basel)

January 2025

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.

View Article and Find Full Text PDF

The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.

View Article and Find Full Text PDF

Enhancing Virus Filter Performance Through Pretreatment by Membrane Adsorbers.

Membranes (Basel)

January 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

Virus filtration is used to ensure the high level of virus clearance required in the manufacture of biopharmaceutical products such as monoclonal antibodies. Flux decline during virus filtration can occur due to the formation of reversible aggregates consisting of self-assembled monomeric monoclonal antibody molecules, particularly at high antibody concentrations. While size exclusion chromatography is generally unable to detect these reversible aggregates, dynamic light scattering may be used to determine their presence.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!