[Temporal and Spatial Variation Patterns of Picophytoplankton and Their Correlations with Environmental Factors During the Wet Season in East Lake Dongting].

Huan Jing Ke Xue

Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China.

Published: June 2020

AI Article Synopsis

  • Picophytoplankton, including picocyanobacteria (PCY) and photosynthetic picoeukaryotes (PPEs), play a vital role in the energy flow and material cycling of aquatic ecosystems, particularly in East Lake Dongting.
  • Monthly field investigations during the wet season (May to August) revealed significant variations in chlorophyll a (Chla) biomass and picophytoplankton abundance, with PCY being 3.4 times more abundant than PPEs on average.
  • The abundance of picophytoplankton showed a north-to-south migration trend in the lake, influenced by environmental factors such as water level and nitrogen-to-phosphorus (N:P) ratio, with notable peaks and

Article Abstract

Picophytoplankton (<3 μm), comprising picocyanobacteria (PCY) and photosynthetic picoeukaryotes (PPEs), are considerably important in the material circulation and energy flow of aquatic ecosystems. To explore the temporal and spatial variation patterns of picophytoplankton and their correlations with environmental factors in lotic Yangtze-connected lakes, field investigations were performed on a monthly basis during the wet season (May to August) in 2019 in East Lake Dongting, a Yangtze-connected lake. The results indicated that both the Chla biomass and abundances of picophytoplankton exhibited significant spatial and temporal variability (<0.05). The picophytoplankton Chla biomass showed an average concentration of 8.52 μg·L and accounted for 41.6% to total phytoplankton on an average. From May to August, Chla biomass of picophytoplankton kept increasing with increasing temperature, especially in the north and south of the lake, and it was the lowest in the east of the lake. PCY dominated picophytoplankton abundance in East Lake Dongting and was 3.4 times the abundance of PPEs on an average. Similar spatial and temporal variation patterns were observed between PCY and PPEs. The abundances of PCY and PPEs both increased first and then decreased during the wet season. Spatially, picophytoplankton showed a trend to migrate from the northern lake to the southern lake from May to July, and the abundance significantly declined in August and peaked mainly in the north of the lake. The analysis results showed that picophytoplankton in East Lake Dongting exhibited significant spatial and temporal variability during the wet season; the water level and N:P ratio were determined to be the most important factors explaining the variation of the abundance proportion of PCY and PPEs.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201912223DOI Listing

Publication Analysis

Top Keywords

[temporal spatial
4
spatial variation
4
variation patterns
4
patterns picophytoplankton
4
picophytoplankton correlations
4
correlations environmental
4
environmental factors
4
factors wet
4
wet season
4
season east
4

Similar Publications

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

Wildlife populations are not static. Intrinsic and extrinsic factors affect individuals, which lead to spatiotemporal variation in population density and range. Yet, dynamics in density and their drivers are rarely documented, due in part to the inherent difficulty of studying long-term population-level phenomena at ecologically meaningful scales.

View Article and Find Full Text PDF

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

Integrated analysis of marked and count data to characterize fine-scale stream fish movement.

Oecologia

January 2025

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!