Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tail of the reservoir is the unstable zone regarding water quality and phytoplankton community. Therefore, it is the crucial zone in aquatic ecosystem transitions. To understand the transition characteristics and driving mechanisms of water environment dynamics, high-frequency monitoring of the water environment and phytoplankton community in the tail of a deep and large reservoir, the Xin'anjiang Reservoir in southeast of China, was conducted using a water quality monitoring buoy and three-day interval water sampling during 18 months. Results show clear seasonal thermal and oxygen stratification in the river mouth of the reservoir. The nutrient and chlorophyll-a concentrations also show stratifying phenomena during the thermal stratification period. Heavy rain and inflow quickly consume the stratification. Nutrient concentrations were highly dynamic in the river mouth. The total phosphorus ranges from 0.011 mg·L to 0.188 mg·L, and total nitrogen ranges from 0.75 mg·L to 2.76 mg·L. Dissolved phosphorus comprised 56% of total phosphorus, and dissolved nitrogen occupied 88% of total nitrogen, respectively. Nutrient concentrations were influenced strongly by rainfall intensity and inflow rate. Total phosphorus and nitrogen concentrations were significantly related to the three-day accumulated rainfall. Nutrient concentrations in the flood season (March to June) were significantly higher than in the non-flood season (<0.001). Seasonal phytoplankton proliferation also significantly influenced by total phosphorus concentration. The phytoplankton community changes significantly with seasons and flood events. Bacillariophytea was generally dominant throughout the year, with the predominant genus of spp., spp., spp., and spp. Cyanophyta biomass peaked in July, August, and September, with the dominant genus of spp., spp., and spp. Apart from the high temperature, storm inflow events also triggered Cyanophyta proliferation. The proliferation of Chlorophyta was similar to Cyanophyta, with the predominant genus of spp. and spp.. While the Cryptophyta biomass peaked during March to May, with the predominant genus of spp.. Redundancy analysis shows that the influence factors of phytoplankton community dynamics include the inflow rate, temperature, water level, water transparency, total nitrogen, total phosphorus, and nitrogen to phosphorus ratio. The meteorological and hydrological factors were major factors for phytoplankton dynamics during later autumn and winter, while the nutrient will be the co-driving factors of phytoplankton community dynamics during summer and early autumn. The research confirmed the huge influence of the intensity rainfall event on the water environment in reservoirs and described the key environmental conditions for phytoplankton community dynamics. The research is useful for the design of the monitoring and forecasting system for water safety in drinking water source reservoirs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201906143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!